Category Archives: Cancer

Effects of polysaccharide peptide (PSP) from Coriolus versicolor on the pharmacokinetics of cyclophosphamide in the rat and cytotoxicity in HepG2 cells

Chan SL, Yeung JH.

Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China. cslkel@hotmail.com

Abstract

Polysaccharide peptide (PSP), isolated from Coriolus versicolor COV-1, has been shown to restore the immunological effects against cyclophosphamide-induced immuno-suppression, although the mechanism(s) involved remain uncertain. This study investigated the PSP-cyclophosphamide interaction by studying the effects of PSP on the pharmacokinetic of cyclophosphamide in the rat and the effect of PSP on the cytotoxic effects of cyclophosphamide on a cancer cell line (HepG2 cells). In the pharmacokinetic studies in the rat, acute pre-treatment of PSP (4 micromol/kg/day, i.p.) decreased the clearance (CL) of cyclophosphamide by 31%, with a concomitant increase in the area under concentration-time curve (AUC) by 44%, and prolongation of the plasma half-life (T(1/2)) by 43%. Sub-chronic pre-treatment of PSP (2 micromol/kg/day, i.p., 3 days) decreased the CL of cyclophosphamide by 33%, with a concomitant increase in the AUC by 50%, and prolongation of the plasma T(1/2) by 34%. In cytotoxicity studies using HepG2 cells, non-toxic dose of PSP (1-10 microM) enhanced the cytotoxicity of cyclophosphamide. PSP at 10 microM further decreased HepG2 cell viability by 22% compared to when cyclophosphamide was present alone. In summary, PSP enhanced the cytotoxic effect of cyclophosphamide on a cancer cell line in vitro and altered the pharmacokinetics of cyclophosphamide in vivo in the rat. Both of these effects may be beneficial in the use of PSP as an adjunct to cyclophosphamide treatment.

PMID: 16297519 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/16297519

Modulation of antipyrine clearance by polysaccharide peptide (PSP) isolated from Coriolus versicolor in the rat.

Chan SL, Yeung JH.

Department of Pharmacology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, China.

Abstract

Polysaccharide peptide (PSP), isolated from Coriolus versicolor COV-1, has been previously shown to have immuno-stimulatory, anti-tumour and analgesic effects in animal models. When used as an adjunct in cancer chemotherapy in clinical trials carried out in China, PSP improved the quality of life in the patients by improving appetite and alleviating symptoms associated with cancer chemotherapy. In this study, the effects of non-toxic doses of PSP on phase I metabolism was investigated in the rat, using the conventional probe antipyrine. Acute PSP (3-5 micromol/kg, i.p.) treatment did not produce significant changes in antipyrine clearance. Sub-chronic treatment with PSP (1-3 micromol/kg/day, i.p., 3 days) decreased the antipyrine clearance (30-35%), with an increase in the plasma half-life (T1/2) by 55% and an increase in the area under concentration-time curve (AUC) by 61%. Total hepatic cytochrome P450 (P450) was dose-dependently decreased (32-54%) after sub-chronic, but not the acute treatment of PSP. Given that PSP can affect phase I metabolism and hepatic cytochrome P450 content, the concomitant use of PSP with other therapeutic agents that undergo phase I metabolism should be carefully monitored.

PMID: 16698162 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/16698162

Coriolus versicolor (Yunzhi) extract attenuates growth of human leukemia xenografts and induces apoptosis through the mitochondrial pathway.

Ho CY, Kim CF, Leung KN, Fung KP, Tse TF, Chan H, Lau CB.

School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, PR China.

Abstract

Coriolus versicolor (CV), also called Yunzhi, has been demonstrated to exert anti-tumor effects on various types of cancer cells. Our previous studies have demonstrated that a standardized aqueous ethanol extract prepared from CV inhibited the proliferation of human leukemia cells via induction of apoptosis. The present study aimed to evaluate the underlying mechanisms of apoptosis through modulation of Bax, Bcl-2 and cytochrome c protein expressions in a human pro-myelocytic leukemia (HL-60) cell line, as well as the potential of the CV extract as anti-leukemia agent using the athymic mouse xenograft model. Our results demonstrated that the CV extract dose-dependently suppressed the proliferation of HL-60 cells (IC50 = 150.6 microg/ml), with increased nucleosome production from apoptotic cells. Expression of pro-apoptotic protein Bax was significantly up-regulated in HL-60 cells treated with the CV extract, especially after 16 and 24 h. Meanwhile, expression of anti-apoptotic protein Bcl-2 was concomitantly down-regulated, as reflected by the increased Bax/Bcl-2 ratio. The CV extract markedly, but transiently, promoted the release of cytochrome c from mitochondria to cytosol after 24-h incubation. In vivo studies in the athymic nude mouse xenograft model also confirmed the growth-inhibitory activity of the CV extract on human leukemia cells. In conclusion, the CV extract attenuated the human leukemia cell proliferation in vivo, and in vitro possibly by inducing apoptosis through the mitochondrial pathway. The CV extract is likely to be valuable for the treatment of some forms of human leukemia.

PMID: 16865263 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/16865263

Induction of cell cycle changes and modulation of apoptogenic/anti-apoptotic and extracellular signaling regulatory protein expression by water extracts of I’m-Yunity (PSP).

Hsieh TC, Wu P, Park S, Wu JM.

Department of Biochemistry & Molecular Biology, New York Medical College, Valhalla, NY 10595, USA. Tze-Chen_Hsieh@nymc.edu

Abstract

BACKGROUND: I’m-Yunity (PSP) is a mushroom extract derived from deep-layer cultivated mycelia of the patented Cov-1 strain of Coriolus versicolor (CV), which contains as its main bioactive ingredient a family of polysaccharo-peptide with heterogeneous charge properties and molecular sizes. I’m-Yunity (PSP) is used as a dietary supplement by cancer patients and by individuals diagnosed with various chronic diseases. Laboratory studies have shown that I’m-Yunity (PSP) enhances immune functions and also modulates cellular responses to external challenges. Recently, I’m-Yunity (PSP) was also reported to exert potent anti-tumorigenic effects, evident by suppression of cell proliferation and induction of apoptosis in malignant cells. We investigate the mechanisms by which I’m-Yunity (PSP) elicits these effects.

METHODS: Human leukemia HL-60 and U-937 cells were incubated with increasing doses of aqueous extracts of I’m-Yunity (PSP). Control and treated cells were harvested at various times and analyzed for changes in: (1) cell proliferation and viability, (2) cell cycle phase transition, (3) induction of apoptosis, (4) expression of cell cycle, apoptogenic/anti-apoptotic, and extracellular regulatory proteins.

RESULTS: Aqueous extracts of I’m-Yunity (PSP) inhibited cell proliferation and induced apoptosis in HL-60 and U-937 cells, accompanied by a cell type-dependent disruption of the G1/S and G2/M phases of cell cycle progression. A more pronounced growth suppression was observed in treated HL-60 cells, which was correlated with time- and dose-dependent down regulation of the retinoblastoma protein Rb, diminution in the expression of anti-apoptotic proteins bcl-2 and survivin, increase in apoptogenic proteins bax and cytochrome c, and cleavage of poly(ADP-ribose) polymerase (PARP) from its native 112-kDa form to the 89-kDa truncated product. Moreover, I’m-Yunity (PSP)-treated HL-60 cells also showed a substantial decrease in p65 and to a lesser degree p50 forms of transcription factor NF-kappaB, which was accompanied by a reduction in the expression of cyclooxygenase 2 (COX2). I’m-Yunity (PSP) also elicited an increase in STAT1 (signal transducer and activator of transcription) and correspondingly, decrease in the expression of activated form of ERK (extracellular signal-regulated kinase).

CONCLUSION: Aqueous extracts of I’m-Yunity (PSP) induces cell cycle arrest and alterations in the expression of apoptogenic/anti-apoptotic and extracellular signaling regulatory proteins in human leukemia cells, the net result being suppression of proliferation and increase in apoptosis. These findings may contribute to the reported clinical and overall health effects of I’m-Yunity (PSP).

PMID: 16965632 [PubMed – indexed for MEDLINE]PMCID: PMC1574346Free PMC Article

http://www.ncbi.nlm.nih.gov/pubmed/16965632

Characterisation and bioactivity of protein-bound polysaccharides from submerged-culture fermentation of Coriolus versicolor Wr-74 and ATCC-20545 strains.

Cui J, Goh KK, Archer R, Singh H.

Riddet Centre, Massey University, Private Bag 11 222, Palmerston North, New Zealand.

Abstract

The protein-bound polysaccharides of Coriolus versicolor (CPS) have been reported to stimulate overall immune functions against cancers and various infectious diseases by activating specific cell functions. A New Zealand isolate (Wr-74) and a patented strain (ATCC-20545) of C. versicolor were compared in this study. The fruit bodies of both strains were grown for visual verification. Both strains were grown in submerged-culture using an airlift fermentor with milk permeate as the base medium supplemented with glucose, yeast extract and salt. Metabolic profiles of both strains obtained over 7-day fermentation showed very similar trends in terms of biomass production (8.9-10.6 mg/ml), amounts of extracellular polysaccharide (EPS) from the culture medium (1150-1132 microg/ml), and intracellular polysaccharide (IPS) from the mycelium (80-100 microg/ml). Glucose was the dominant sugar in both EPS and IPS, and the polymers each consisted of three molecular weight fractions ranging from 2 x 10(6) to 3 x 10(3 )Da. Both the EPS and IPS were able to significantly induce cytokine production (interleukin 12 and gamma interferon) in murine splenocytes in vitro. Highest levels of interleukin 12 (291 pg/ml) and gamma interferon (6,159 pg/ml) were obtained from samples containing Wr-74 IPS (0.06 microg/ml) and ATCC 20545 IPS (0.1 microg/ml), respectively. The results indicated that lower levels of EPS and IPS generally resulted in higher immune responses than did higher polymer concentrations.

PMID: 17318488 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/17318488

[Coriolus versicolor–innovation in prevention of oncogynecological diseases, especially HPV]

Akush Ginekol (Sofiia). 2008;47 Suppl 3:51-3.

[Article in Bulgarian]

Bogdanova J.

Abstract

Coriolus-MRL is a nutrient adjuvant, which contains biomass of the fungus Coriolus versicolor and is studied to reverse early stages of cervical cancer and to reduce risk factors of reoccurring HPV virus.

PMID: 19449722 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/19449722

Polysaccharopeptide enhances the anticancer activity of doxorubicin and etoposide on human breast cancer cells ZR-75-30.

Wan JM, Sit WH, Louie JC.

Food and Nutritional Science Division, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, PR China. jmfwan@hkusua.hku.hk

Abstract

In search of natural bioactive microbial compounds with adjuvant properties, we have previously showed that the polysaccharopeptide (PSP), isolated from Chinese medicinal mushroom Coriolus versicolor, was able to enhance the cytotoxicity of certain S-phase targeted-drugs on human leukemic HL-60 cells via some cell-cycle and apoptotic-dependent pathways. The present study aimed to investigate whether the synergism of mechanisms of PSP with certain chemotherapeutic drugs also applies to human breast cancer. PSP treatment enhanced the cytotoxicity of doxorubicin (Doxo), etoposide (VP-16) but not cytarabine (Ara-C). Bivariate bromodeoxyuridine (BrdUrd)/DNA flow cytometry analysis estimated a longer DNA synthesis time (Ts) for the PSP treated cancerous cells suggesting that PSP enhanced the apoptotic effect of Doxo and VP-16 via creating an S-phase trap in the human breast cancer cell line ZR-75-30. The participation of PSP in the apoptotic machinery of the chemotherapeutic agents was further supported by a reduced ratio of protein expression of Bcl-xL/Bax of the cancer cells. This study provides further insight into the synergistic mechanisms of PSP and supports the hypothesis that the anticancer potentials of PSP is not limited to leukemia but may also be used as an adjuvant therapy for breast cancers.

PMID: 18292947 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/18292947

The immunomodulator PSK induces in vitro cytotoxic activity in tumour cell lines via arrest of cell cycle and induction of apoptosis.

Jiménez-Medina E, Berruguilla E, Romero I, Algarra I, Collado A, Garrido F, Garcia-Lora A.

Servicio de Análisis Clínicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Universidad de Granada, Av, de las Fuerzas Armadas 2, 18014 Granada, Spain. evajimenez@fundacionhvn.org

Abstract

BACKGROUND: Protein-bound polysaccharide (PSK) is derived from the CM-101 strain of the fungus Coriolus versicolor and has shown anticancer activity in vitro and in in vivo experimental models and human cancers. Several randomized clinical trials have demonstrated that PSK has great potential in adjuvant cancer therapy, with positive results in the adjuvant treatment of gastric, esophageal, colorectal, breast and lung cancers. These studies have suggested the efficacy of PSK as an immunomodulator of biological responses. The precise molecular mechanisms responsible for its biological activity have yet to be fully elucidated.

METHODS: The in vitro cytotoxic anti-tumour activity of PSK has been evaluated in various tumour cell lines derived from leukaemias, melanomas, fibrosarcomas and cervix, lung, pancreas and gastric cancers. Tumour cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of PSK on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in PSK-treated cells.

RESULTS: PSK showed in vitro inhibition of tumour cell proliferation as measured by BrdU incorporation and viable cell count. The inhibition ranged from 22 to 84%. Inhibition mechanisms were identified as cell cycle arrest, with cell accumulation in G0/G1 phase and increase in apoptosis and caspase-3 expression. These results indicate that PSK has a direct cytotoxic activity in vitro, inhibiting tumour cell proliferation. In contrast, PSK shows a synergistic effect with IL-2 that increases PBL proliferation.

CONCLUSION: These results indicate that PSK has cytotoxic activity in vitro on tumour cell lines. This new cytotoxic activity of PSK on tumour cells is independent of its previously described immunomodulatory activity on NK cells.

PMID: 18366723 [PubMed – indexed for MEDLINE]PMCID: PMC2291471Free PMC Article

http://www.ncbi.nlm.nih.gov/pubmed/18366723

Protein-bound polysaccharide-K (PSK) directly enhanced IgM production in the human B cell line BALL-1

Maruyama S, Akasaka T, Yamada K, Tachibana H.

Laboratory of Food Chemistry, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Higashi-ku, Fukuoka, Japan. marushins2003@ybb.ne.jp

Abstract

Protein-bound polysaccharide-K (PSK) prepared from the basidiomycete Coriolus versicolor has been used as a biological response modifier for the treatment of cancer patients. Many studies describing the immunomodulatory effects and direct anti-cancer effects of PSK have been reported. Most of studies describing the immunomodulatory effects focused on cellular immunity, although there were several studies which focused on humoral immunity where PSK was shown to be able to induce antibody production in vivo. However, even in these humoral immunity studies, it is thought that the enhancement of antibody production was due to the activation of cellular immunity. In this study, we investigated the direct effect of PSK on B cells and discovered that PSK was able to enhance IgM production in the human B cell line BALL-1. Furthermore, BALL-1 was shown to have the characteristic features of B-1a cells, which are independently involved in the primary immune response. These results show that there is a possibility that PSK directly acts on B cells and simultaneously enhances both humoral immunity and cellular immunity.

PMID: 18848763 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/18848763

Polysaccharopeptides derived from Coriolus versicolor potentiate the S-phase specific cytotoxicity of Camptothecin (CPT) on human leukemia HL-60 cells.

Wan JM, Sit WH, Yang X, Jiang P, Wong LL.

Agricultural, Food and Nutritional Sciences Division, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China. jmfwan@hkusua.hku.hk.

Abstract

ABSTRACT:

BACKGROUND: Polysaccharopeptide (PSP) from Coriolus versicolor (Yunzhi) is used as a supplementary cancer treatment in Asia. The present study aims to investigate whether PSP pre-treatment can increase the response of the human leukemia HL-60 cells to apoptosis induction by Camptothecin (CPT).

METHODS: We used bivariate bromodeoxyuridine/propidium iodide (BrdUrd/PI) flow cytometry analysis to measure the relative movement (RM) of the BrdUrd positively labeled cells and DNA synthesis time (Ts) on the HL-60 cell line. We used annexin V/PI flow cytometry analysis to quantify the viable, necrotic and apoptotic cells. The expression of cyclin E and cyclin B1 was determined with annexin V/PI flow cytometry and western blotting. Human peripheral blood mononuclear cells were used to test the cytotoxicity of PSP and CPT.

RESULTS: PSP reduced cellular proliferation; inhibited cells progression through both S and G2 phase, reduced 3H-thymidine uptake and prolonged DNA synthesis time (Ts) in HL-60 cells. PSP-pretreated cells enhanced the cytotoxicity of CPT. The sensitivity of cells to the cytotoxic effects of CPT was seen to be the highest in the S-phase and to a small extent of the G2 phase of the cell cycle. On the other hand, no cell death (measured by annexin V/PI) was evident with the normal human peripheral blood mononuclear cells with treatment of either PSP or CPT.

CONCLUSION: The present study shows that PSP increases the sensitization of the HL-60 cells to undergo effective apoptotic cell death induced by CPT. The pattern of sensitivity of cancer cells is similar to that of HL-60 cells. PSP rapidly arrests and/or kills cells in S-phase and did not interfere with the anticancer action of CPT. PSP is a potential adjuvant to treat human leukemia as rapidly proliferating tumors is characterized by a high proportion of S-phase cells.

PMID: 20423495 [PubMed – in process]PMCID: PMC2874562

http://www.ncbi.nlm.nih.gov/pubmed/20423495