All posts by author1

Discrimination against 13C during degradation of simple and complex substrates by two white rot fungi.

Fernandez I, Cadisch G.

Department of Agricultural Sciences, Imperial College London, Wye Campus, Wye TN25 5AH, UK.

Abstract

Changes in isotopic 13C signatures of CO2-C evolved during decomposition of a sugar (glucose), a fatty acid (palmitic acid), a protein (albumin), a structural biopolymer (lignin) and bulk plant tissue (aerial shoots from Lolium perenne) were monitored over a period of 76 days. All materials were sterilized and inoculated with either of two different species of white rot fungi, Phanerochaete chrysosporium or Coriolus versicolor, and incubated in sealed bottles at 28 degrees C. The CO2 concentration in the jars was periodically determined using an infrared gas analyzer and its isotopic (13C) signature was assessed using a trace gas (ANCA TGII) module coupled to an isotope ratio mass spectrometer (IRMS, Europa 20-20). L. perenne material inoculated with C. versicolor showed the highest C mineralization activity with approximately 70% of total C evolved as CO2 after 76 days of incubation, followed by glucose. Substrates inoculated with C. versicolor generally decomposed faster than when degraded by P. chrysosporium, except for lignin, where no significant differences between the two fungi types were found and CO2-C released was less than 2% of the initial C. Considerable 13C isotopic fractionation during the degradation of plant tissue and of pure biochemical compounds was revealed as well as progressive shifts in cumulative CO2-13C isotopic signatures over time. During the first stages of decomposition, the CO2-C released was usually depleted in 13C as compared with the initial solid substrate, but with ongoing decomposition the CO2-C evolved became progressively more enriched in 13C. P. chrysosporium usually showed a slightly higher 13C fractionation than C. versicolor during the first decomposition phase. At posterior decomposition stages isotopic discrimination was often stronger by C. versicolor. These findings on isotopic 13C discrimination during microbial degradation both of simple biochemical compounds and of complex vegetal tissue confirmed not only the existence of significant 13C isotopic fractionation during plant residue decomposition, but also the existence of non-random isotopic distribution within substrates. They also demonstrated the ability of microorganisms to selectively discriminate against 13C even when degrading an isolated simple substrate.

PMID: 14648898 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/14648898

Medicinal and edible lignicolous fungi as natural sources of antioxidative and antibacterial agents.

Karaman M, Jovin E, Malbasa R, Matavuly M, Popovi? M.

Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg D. Obradovica 2, 21000 Novi Sad, Serbia.

Abstract

The antioxidant activity of organic extracts of eight fungal species, Ganoderma lucidum, Ganoderma applanatum, Meripilus giganteus, Laetiporus sulphureus, Flammulina velutipes, Coriolus versicolor, Pleurotus ostreatus and Panus tigrinus, was evaluated for free radical (DPPH(·) and OH(·)) scavenging capacity and an effect on lipid peroxidation, and the antibacterial activity was tested by the agar well diffusion method. The highest DPPH(·) scavenging activity was found in the methanol extract of G. applanatum (12.5??g/mL, 82.80%) and the chloroform extract of G. lucidum (510.2??g/mL, 69.12%). The same extracts also showed the highest LP inhibition (91.83%, 85.09%) at 500??g/mL, while the methanol extracts of G. applanatum and L. sulphureus showed the highest scavenging effect on OH(·) radicals (68.47%, 57.06%, respectively) at 400??g/mL. A strong antibacterial activity against Gram-positive bacteria was also manifested. The antioxidative potencies correlated generally with the total phenol content (0.19-9.98?mg/g). The HPLC determination showed that the majority of analysed species contained gallic and protocatechic acids. Consequently, these fungi are shown to be potential sources of antioxidative and antibacterial agents. Copyright © 2010 John Wiley & Sons, Ltd.

PMID: 20878697 [PubMed – in process]

http://www.ncbi.nlm.nih.gov/pubmed/20878697

Purification, characterization, and molecular cloning of a pyranose oxidase from the fruit body of the basidiomycete, Tricholoma matsutake.

Takakura Y, Kuwata S.

Plant Breeding and Genetics Research Laboratory, Japan Tobacco, Inc.. Iwata, Shizuoka, Japan. yoshimitsu.takakura@ims.jti.co.jp

Abstract

A new H(2)O(2)-generating pyranose oxidase was purified as a strong antifungal protein from an arbuscular mycorrhizal fungus, Tricholoma matsutake. The protein showed a molecular mass of 250 kDa in gel filtration, and probably consisted of four identical 62 kDa subunits. The protein contained flavin moiety and it oxidized D-glucose at position C-2. H(2)O(2) and D-glucosone produced by the pyranose oxidase reaction showed antifungal activity, suggesting these compounds were the molecular basis of the antifungal property. The V(max), K(m), and k(cat) for D-glucose were calculated to be 26.6 U/mg protein, 1.28 mM, and 111/s, respectively. The enzyme was optimally active at pH 7.5 to 8.0 and at 50 degrees C. The preferred substrate was D-glucose, but 1,5-anhydro-D-glucitol, L-sorbose, and D-xylose were also oxidized at a moderate level. The cDNA encodes a protein consisting of 564 amino acids, showing 35.1% identity to Coriolus versicolor pyranose oxidase. The recombinant protein was used for raising the antibody.

PMID: 14730138 [PubMed – indexed for MEDLINE]Free Article

http://www.ncbi.nlm.nih.gov/pubmed/14730138

Evaluation of Argentinean white rot fungi for their ability to produce lignin-modifying enzymes and decolorize industrial dyes.

Lau CB, Ho CY, Kim CF, Leung KN, Fung KP, Tse TF, Chan HH, Chow MS.

School of Pharmacy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong. claralau@cuhk.edu.hk

Abstract

Coriolus versicolor (CV), also known as Yunzhi, is one of the commonly used Chinese medicinal herbs. Although recent studies have demonstrated its antitumour activities on cancer cells in vitro and in vivo, the exact mechanism is not fully elucidated. Hence, the objective of this study was to examine the in vitro cytotoxic activities of a standardized aqueous ethanol extract prepared from Coriolus versicolor on a B-cell lymphoma (Raji) and two human promyelocytic leukemia (HL-60, NB-4) cell lines using a MTT cytotoxicity assay, and to test whether the mechanism involves induction of apoptosis. Cell death ELISA was employed to quantify the nucleosome production resulting from nuclear DNA fragmentation during apoptosis. The present results demonstrated that CV extract at 50 to 800 microg/ml dose-dependently suppressed the proliferation of Raji, NB-4, and HL-60 cells by more than 90% (p < 0.01), with ascending order of IC50 values: HL-60 (147.3 +/- 15.2 microg/ml), Raji (253.8 +/- 60.7 microg/ml) and NB-4 (269.3 +/- 12.4 microg/ml). The extract however did not exert any significant cytotoxic effect on normal liver cell line WRL (IC50 > 800 microg/ml) when compared with a chemotherapeutic anticancer drug, mitomycin C (MMC), confirming the tumour-selective cytotoxicity. Nucleosome productions in HL-60, NB-4 and Raji cells were significantly increased by 3.6-, 3.6- and 5.6-fold respectively upon the treatment of CV extract, while no significant nucleosome production was detected in extract-treated WRL cells. The CV extract was found to selectively and dose-dependently inhibit the proliferation of lymphoma and leukemic cells possibly via an apoptosis-dependent pathway.

PMID: 15183073 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/15158509

Fungal polysaccharopeptide inhibits tumor angiogenesis and tumor growth in mice.

Ho JC, Konerding MA, Gaumann A, Groth M, Liu WK.

Department of Anatomy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

Abstract

Angiogenesis is crucial to tumor growth and metastasis, and interruption of this process is a prime avenue for therapeutic intervention of tumor proliferation. The present study has made use of the S180 tumor-bearing mouse model to investigate the polysaccharopeptide, PSP, isolated from the edible mushroom Coriolus versicolor, a herbal medicine known for its anti-angiogenesis properties. Quantitative analysis of microcorrosion casting of the tumor tissue showed more angiogenic features such as dense sinusoids and hot spots, in control (untreated) than in PSP-treated animals. Immunostaining of tumor tissues with antibody against the endothelial cell marker (Factor VIII) demonstrated a positive correlation in that both the vascular density and tumor weight were lower in mice treated with PSP. Morphometric analysis of corrosion casts revealed that, even though the total amount of new vessel production was reduced, the basic tumor type-specific vascular architecture was retained. However, the expression of vascular endothelial cell growth factor (VEGF) in these tumors was suppressed. In conclusion, anti-angiogenesis should be one of the pathways through which PSP mediated its anti-tumor activity.

PMID: 15234192 [PubMed – indexed for MEDLINE]

Treatment of cancer with mushroom products.

Monro JA.

Breakspear Hospital, Hemel Hempstead, Herts, United Kingdom. jmonro@breakspearmedical.com

Abstract

Cancer has been attributed to 3 causes: pollution, infection, and poor nutrition. Conventional treatments include surgery, chemotherapy, and radiotherapy. The author proposes that immunotherapy also be considered. Among other environmental influences, dietary deficiencies and carcinogenic viral infections must be investigated and treated wherever possible. It has been suggested that mushrooms, in particular, have a structure that is immunomodulatory because it resembles the proteoglycan structure in the human extracellular matrix, and both are metabolically active. Inasmuch as mitochondria have a bacterial origin, proteoglycans may have a mushroom origin. The author describes a study which shows that natural killer cells can double in number with 8 wk of treatment with Coriolus versicolor. Also described is an epidemiological survey of cancer deaths among Flammulina velutipes farmers in Japan, which found that the mushroom farmers had lower rates of cancer deaths than controls who were not involved in mushroom farming.

PMID: 15259434 [PubMed – indexed for MEDLINE]

Differential effect of Coriolus versicolor (Yunzhi) extract on cytokine production by murine lymphocytes in vitro.

Ho CY, Lau CB, Kim CF, Leung KN, Fung KP, Tse TF, Chan HH, Chow MS.

School of Pharmacy, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.

Abstract

Being one of the commonly used Chinese medicinal herbs, Coriolus versicolor (CV), also named as Yunzhi, was known to possess both anti-tumor and immunopotentiating activities. The present study aimed to investigate the in vitro immunomodulatory effect of a standardized ethanol-water extract prepared from CV on the proliferation of murine splenic lymphocytes using the MTT assay, and the production of six T helper (Th)-related cytokines using the enzyme-linked immunosorbent assay (ELISA) technique. The results showed that the CV extract significantly augmented the proliferation of murine splenic lymphocytes in a time- and dose-dependent manner, maximally by 2.4-fold. Moreover, the production of two Th1-related cytokines, including interleukin (IL)-2 and IL-12, in culture supernatants from the CV extract-activated lymphocytes was prominently upregulated at 48 and 72 h. Positive correlations were found between the levels of these two cytokines and the MTT-based proliferative response. In contrast, the production of two other Th1-related cytokines, including interferon (IFN)-gamma and IL-18, was significantly augmented only at 24 h, but not at 48 and 72 h. On the other hand, the levels of two Th2-related cytokines such as IL-4 and IL-6 were undetectable in the culture supernatants of lymphocytes treated with the CV extract. The CV extract was suggested to be a lymphocyte mitogen by differentially enhancing the production of Th1-related cytokines.

PMID: 15351324 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/15351324

Decolorization and degradation of xanthene dyes by a white rot fungus, Coriolus versicolor.

Itoh K, Yatome C.

Nagoya Municipal Industrial Research Institute, Atsuta-ku, Nagoya, Japan. kitoh@nmiri.city.nagoya.jp

Abstract

The decolorization of six xanthene dyes (conc. 100 microM) by a white rot fungus, Coriolus versicolor (C. versicolor), was investigated in liquid culture. The decolorization of Fluorescein, 4-Aminofluorescein, and 5-Aminofluorescein by the fungus was 85.0, 95.0, and 91.9% after 14 days incubation, respectively. However, no decolorization of Rhodamine B, Rhodamine 123 hydrate, and Rhodamine 6G was observed. The first three dyes also were decolorized with cell-free extracts from C. versicolor. The decolorization activity was 10.2, 6.7, and 7.2 microM min(-1)mg(-1), respectively. Thin layer chromatography (TLC) analyses indicated that degradation of Fluorescein was occurring with the detection of three degradation products.

PMID: 15478930 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/15478930

Overproduction of recombinant laccase using a homologous expression system in Coriolus versicolor.

Kajita S, Sugawara S, Miyazaki Y, Nakamura M, Katayama Y, Shishido K, Iimura Y.

Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588, Japan.

Abstract

One of the major extracellular enzymes of the white-rot fungus Coriolus versicolor is laccase, which is involved in the degradation of lignin. We constructed a homologous system for the expression of a gene for laccase III (cvl3) in C. versicolor, using a chimeric laccase gene driven by the promoter of a gene for glyceraldehyde-3-phosphate dehydrogenase (gpd) from this fungus. We transformed C. versicolor successfully by introducing both a gene for hygromycin B phosphotransferase (hph) and the chimeric laccase gene. In three independent experiments, we recovered 47 hygromycin-resistant transformants at a transformation frequency of 13 transformants microg(-1) of plasmid DNA. We confirmed the introduction of the chimeric laccase gene into the mycelia of transformants by a polymerase chain reaction in nine randomly selected transformants. Overproduction of extracellular laccase by the transformants was revealed by a colorimetric assay for laccase activity. We examined the transformant (T2) that had the highest laccase activity and found that its activity was significantly higher than that of the wild type, particularly in the presence of copper (II). Our transformation system should contribute to the efficient production of the extracellular proteins of C. versicolor for the accelerated degradation of lignin and aromatic pollutants.

PMID: 15480638 [PubMed – indexed for MEDLINE]

The effect of nitrogen supplementation on the efficiency of colour and COD removal by Malaysian white-rot fungi in textile dyeing effluent.

Lee KK, Kassim AM, Lee HK.

Faculty of Applied Sciences, MARA University of Technology, 40450 Shah Alam, Selangor, Malaysia. lee766@salam.uitm.edu.my

Abstract

White-rot fungi, namely Coriolus versicolor and Schizophyllum commune, were studied for the biodecolorization of textile dyeing effluent in shaker-flask experiments. The results showed that C. versicolor was able to achieve 68% color removal after 5 days of treatment while that of S. commune was 88% in 9 days. Both fungi achieved the above results in non-sterile condition with diammonium hydrogen phosphate as the nutrient supplement. On the other hand, the best COD removal of 80% was obtained with C. versicolor in 9 days in sterile effluent with yeast extract as nutrient supplement, while S. commune was able to remove 85% COD within 8 days in non-sterile textile effluent supplemented with diammonium hydrogen phosphate.

PMID: 15497832 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/15497832