Changes to water repellence of soil caused by the growth of white-rot fungi: studies using a novel microcosm system.

White NA, Hallett PD, Feeney D, Palfreyman JW, Ritz K.

SIMBIOS, School of Science and Engineering, University of Abertay Dundee, Bell Street, Dundee, UK. n.white@abertay-dundee.ac.uk

Abstract

A microcosm system is described which permits assessment of the progressive growth of filamentous fungi through soil. We report on its application to measure the effects of Coriolus versicolor and Phanerochaete chrysosporium upon the sorptivity and water repellence of a mineral soil, measured using a miniature infiltration device. Both fungal species caused moderate sub-critical repellence. Since the pore structure was unaffected, the repellence was probably due to hydrophobic substances of fungal origin. This is the first report of changes in soil repellence caused by the growth of potential xenobiotic bioremediating fungi. The potential consequences are discussed.

PMID: 10689169 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/10689169

The use of mushroom glucans and proteoglycans in cancer treatment.

Kidd PM.

Abstract

Immunoceuticals can be considered as substances having immunotherapeutic efficacy when taken orally. More than 50 mushroom species have yielded potential immunoceuticals that exhibit anticancer activity in vitro or in animal models and of these, six have been investigated in human cancers. All are non-toxic and very well tolerated. Lentinan and schizophyllan have little oral activity. Active Hexose Correlated Compound (AHCC) is poorly defined but has shown early clinical promise. Maitake D-Fraction has limited proof of clinical efficacy to date, but controlled research is underway. Two proteoglycans from Coriolus versicolor – PSK (Polysaccharide-K) and PSP (Polysaccharide-Peptide – have demonstrated the most promise. In Japanese trials since 1970, PSK significantly extended survival at five years or beyond in cancers of the stomach, colon-rectum, esophagus, nasopharynx, and lung (non-small cell types), and in a HLA B40-positive breast cancer subset. PSP was subjected to Phase II and Phase III trials in China. In double-blind trials, PSP significantly extended five-year survival in esophageal cancer. PSP significantly improved quality of life, provided substantial pain relief, and enhanced immune status in 70-97 percent of patients with cancers of the stomach, esophagus, lung, ovary, and cervix. PSK and PSP boosted immune cell production, ameliorated chemotherapy symptoms, and enhanced tumor infiltration by dendritic and cytotoxic T-cells. Their extremely high tolerability, proven benefits to survival and quality of life, and compatibility with chemotherapy and radiation therapy makes them well suited for cancer management regimens.

PMID: 10696116 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/10696116

Immunomodulation and anti-cancer activity of polysaccharide-protein complexes.

Ooi VE, Liu F.

Department of Biology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.

Abstract

In the last three decades, numerous polysaccharides and polysaccharide-protein complexes have been isolated from mushrooms and used as a source of therapeutic agents. The most promising biopharmacological activities of these biopolymers are their immunomodulation and anti-cancer effects. They are mainly present as glucans with different types of glycosidic linkages such as (1–>3), (1–>6)-beta-glucans and (1–>3)-alpha-glucans, and as true herteroglycans, while others mostly bind to protein residues as polysaccharide-protein complexes. Three antitumor mushroom polysaccharides, i.e. lentinan, schizophyllan and protein-bound polysaccharide (PSK, Krestin), isolated respectively, from Lentinus edodes, Schizophyllum commune and Coriolus versicolor, have become large market items in Japan. Lentinan and schizophyllan are pure beta-glucans, whereas PSK is a protein-bound beta-glucan. A polysaccharide peptide (PSP), isolated from a strain of Coriolus versicolor in China, has also been widely used as an anti-cancer and immunomodulatory agent. Although the mechansim of their antitumor action is still not completely clear, these polysaccharides and polysaccharide-protein complexes are suggested to enhance cell-mediated immune responses in vivo and in vitro and act as biological response modifiers. Potentiation of the host defense system may result in the activation of many kinds of immune cells that are vitally important for the maintenance of homeostasis. Polysaccharides or polysaccharide-protein complexes are considered as multi-cytokine inducers that are able to induce gene expression of vaious immunomodulatory cytokines and cytokine receptors. Some interesting studies focus on investigation of the relationship between their structure and antitumor activity, elucidation of their antitumor mechanism at the molecular level, and improvement of their various biological activities by chemical modifications.

PMID: 10702635 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/10702635