Degradation mechanisms of phenolic beta-1 lignin substructure model compounds by laccase of Coriolus versicolor.

Kawai S, Umezawa T, Higuchi T.

Research Section of Lignin Chemistry, Wood Research Institute, Kyoto University, Japan.

Abstract

Phenolic beta-1 lignin substructure model compounds, 1-(3,5-dimethoxy-4-hydroxy-phenyl)-2-(3,5-dimethoxy-4-ethoxyphenyl)propa ne-1, 3-diol (I) and 1-(3,5-dimethoxy-4-ethoxyphenyl)-2-(3, 5-dimethoxy-4-hydroxyphenyl)propane-1,3-diol (II) were degraded by laccase of Coriolus versicolor. Substrate I was converted to 1-(3,5-dimethoxy-4-hydroxyphenyl)-2-(3,5-dimethoxy-4-ethoxyphenyl)-3- hydroxypropanone (III), 1-(3,5-dimethoxy-4-ethoxyphenyl)-2-hydroxyethanone (IV), syringaldehyde (V), 1-(3,5-dimethoxy-4-ethoxyphenyl)-3-hydroxypropanal (VI), 2,6-dimethoxy-p-hydroquinone (VII), and 2,6-dimethoxy-p-benzoquinone (VIII). Furthermore, incorporations of 18O of 18O2 into ethanone (IV) and 18O of H218O into hydroquinone (VII) and benzoquinone (VIII) were confirmed. Substrate II gave 1-(3,5-dimethoxy-4-hydroxyphenyl)ethane-1, 2-diol (IX), 1-(3,5-dimethoxy-4-hydroxyphenyl)-2-hydroxyethanone (X), and 3,5-dimethoxy-4-ethoxybenzaldehyde (XI). Also 18O of H218O was incorporated into glycol (IX) and ethanone (X). Based on the structures of the degradation products and the isotopic experiments, it was established that three types of reactions occurred via phenoxy radicals of substrates caused by laccase: (i) C alpha-C beta cleavage (between C1 and C2 carbons); (ii) alkyl-aryl cleavage (between C1 carbon and aryl group); and (iii) C alpha (C1) oxidation.

PMID: 3355177 [PubMed – indexed for MEDLINE]

http://www.ncbi.nlm.nih.gov/pubmed/3355177