Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis.

Zhang X, Xu C, Wang H.

College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, PR China. zhangxiaoyu@mail.hust.edu.cn

Abstract

Pretreatment by a white-rot fungus Coriolus versicolor B1 under different conditions and saccharification of bamboo were investigated. The saccharification rate was significantly enhanced and a maximum saccharification rate of 37.0% was achieved after pretreatment. Reducing sugars yield was 223.2 mg/g of bamboo residues, which was 2.34 times that of the raw material. It was feasible to treat bamboo residues with B1 for the saccharification of bamboo.

PMID: 17884661 [PubMed – indexed for MEDLINE]Free Article

http://www.ncbi.nlm.nih.gov/pubmed/17884661

Desorption of zinc by extracellularly produced metabolites of Trichoderma harzianum, Trichoderma reesei and Coriolus versicolor.

Adams P, Lynch JM, De Leij FA.

School of Biomedical and Molecular Sciences, University of Surrey, Guildford, Surrey, UK.

Abstract

AIMS: To determine the role of fungal metabolites in the desorption of metals.

METHODS AND RESULTS: Desorption of Zn from charcoal by three different fungi was compared against metal desorption with reverse osmosis water, a 0.1% Tween 80 solution and a 0.1 mol l(-1) CaCl(2) solution. All three fungal filtrates desorbed three times more Zn than either 0.1% Tween 80 or 0.1 mol l(-1) CaCl(2). Metal chelator production in Trichoderma harzianum and Coriolus versicolor was constitutively expressed while chelator production in Trichoderma reesei was induced by Zn. The presence of Zn inhibited the production of metal chelators by C. versicolor. Only C. versicolor was found to produce oxalic acid (a strong metal chelator). All fungi caused a marked decrease in pH, although this was not enough to explain the increased desorption of the metals by the different fungal filtrates.

CONCLUSIONS: Metal chelation via organic acids and proteins are the main mechanisms by which the fungal filtrates increase zinc desorption.

SIGNIFICANCE AND IMPACT OF THE STUDY: The results of this study explain why plants inoculated with T. harzianum T22 take up more metal from soil, than noninoculated plants while metabolites produced by fungi could be used for metal leaching from contaminated soils.

PMID: 18045407 [PubMed – indexed for MEDLINE]

https://mushroomstudies.co/wp-admin/post-new.php